CLASS IX

 SAMPLE PAPER

 SAMPLE PAPER

 MATHS

 MATHS}

SECTION - A

1. Evaluate $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}$ Given that $\sqrt{5}=2.236$ and $\sqrt{10}=3.162$
2. If $x^{2}-5 x-1=0$, Find $x^{2}+\frac{1}{x^{2}}$
3. Does Euclid's $5^{\text {th }}$ postulate imply the existence of parallel lines?
4. Three vertices of a rectangle $\operatorname{ABCD} A(1,3) B(1,-1) C(7,-1)$ Plot the points on the graph paper \& use it to find the coordinates of the $4^{\text {th }}$ vertex D. Also find the area of the rectangle.

SECTION - B

5. Prove that : $\frac{a^{-1}}{a^{-1}+b^{-1}}+\frac{a^{-1}}{a^{-1}-b^{-1}}=\frac{2 b^{2}}{b^{2}-a^{2}}$
6. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are all non-zero $\& \mathrm{a}+\mathrm{b}+\mathrm{c}=0$, prove that $\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}=3$
7. T is a point on side $Q R$ of $\triangle P Q R \& S$ is a point such that $R T=S T$ Prove that $P Q+P R>Q S$.

8. If the bisectors of $\angle \mathrm{A} \& \angle \mathrm{~B}$ of a quadrilateral ABCD meets at O . Then $\angle A O B=1 / 2[\angle C+\angle D]$.
9. If the coordinates of a point M are $(-2,9)$ which can also be expressed as $\left(1+x, y^{2}\right) \& y>0$, then find in which quadrant do the following points lie: $P(y, x) ; Q(2, x) R\left(x^{2}, y-1\right) S(2 x,-3 y)$

cbse Sguess	

10. The dimensions of a rectangle $A B C D$ are $51 \mathrm{~cm} \times 25 \mathrm{~cm}$. A trapezium PQCD with its parallel sides $Q C \& P D$ in the ratio $9: 8$, is cut off from the rectangle (as in fig.). If the area of the trapezium PQCD is $5 / 6$ of the area of rectangle $A B C D$. Find QC \& PD.

SECTION - C
11. Rationalise : $\frac{30}{\sqrt{6}+\sqrt{5}-\sqrt{11}}$
12. Simplify $\sqrt[5]{x^{4} \sqrt[4]{x^{3} \sqrt[3]{x^{2} \sqrt{x}}}}$
13. If both $(x-2) \&(x-1 / 2)$ are the factors of $a x^{2}+5 x+c$ Show that $a=c$.
14.If $x^{2}-b x+c=(x+p)(x-q)$ then factorise $x^{2}-b x y+c y^{2}$
15. The difference between semi-perimeter \& sides of $\triangle A B C$ are $5 \mathrm{~cm}, 7 \mathrm{~cm} \& 8 \mathrm{~cm}$ respectively. Find the area of triangle.
16. $\angle \mathrm{ACB}$ is a right angle \& $\mathrm{AC}=\mathrm{CD} \& \mathrm{CDEF}$ is a parallelogramif $\angle \mathrm{FEC}=10$ Find $\angle \mathrm{BDE}$. If $\angle \mathrm{FEC}=10$ Find $\angle \mathrm{BDE}$

B
17. In $\triangle A B C$, sides $A B \& A C$ are produced to $D \& E$ respectively. $B P, C P, B Q \& C Q$ are bisectors of $\angle A B C, \angle A C B$, $\angle C B D \& \angle \overline{B C E}$ respectively. Prove that $\angle B P C+\angle B Q C=180^{\circ}$.

18. Find the value of $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{S}+\angle \mathrm{T}$.

19. Plot points $A(2,0) B(2,2) C(2,2) D(0,2)$. Join $O A, A B, B C, C O$. Name the fig. \& calculate the area. 20. $\mathrm{RT}=\mathrm{TS}, \angle 1=2 \angle 2, \angle 4=2 \angle 3$. Prove that $\triangle R B T \cong \triangle S A T$.

SECTION - D

21. If $\mathrm{abc}=1$ show that $\left(1+a+\frac{1}{b}\right)^{-1}+\left(1+b+\frac{1}{c}\right)^{-1}+\left(1+c+\frac{1}{a}\right)^{-1}=1$
22. Find the value of $\sqrt[3]{\sqrt{30}+\sqrt{3}} \times \sqrt[3]{\sqrt{30}-\sqrt{3}}$.
23. Factorise : $\left(3 m^{2}-2 m\right)\left(6-3 m^{2}+2 m\right)-5$
24. If $(x+y)^{3}-(x-y)^{3}-6 y\left(x^{2}-y^{2}\right)=k y^{3}$ Find the value of ' k '
25. Resolve into factors : $(1+a+b+c+a b+b c+c a+a b c)$.

cbse | gguess | CBSEGuess.com |
| :--- | :--- |

26.If $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, Prove that $a^{4}+b^{4}+c^{4}=2\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right)$
27. Find the percentage increase in the area of the triangle if its each side is doubled.
28. Answer the following
(i). If a point C lies between two points A and B such that $\mathrm{AC}=\mathrm{BC}$, then prove that $\mathrm{AC}=1 / 2 \mathrm{AB}$. Explain by drawing the figure.
(ii) Point C is called a mid-point of line segment AB . Prove that every line segment has one and only one mid-point. Lines
29. $O A=O B, O C=O D \& \angle A O B=\angle C O D$. Prove that $A C=B D$

30. Prove that sum of three altitudes of a triangle is less than the three sides of triangle.

Please send your querries at

 vishvas_1@ymail.comNo phone calls please.
May send querries on whataapp
90415-11611

VISHVAS TUTORIALS LUDHIANA

All the best

